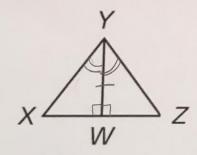
Station 1: Proof Practice

Use the statements and reasons provided to complete the proof. Mark the diagram first!

Given: \overline{WY} is an altitude of ΔXYZ

 \overline{WY} is an angle bisector ΔXYZ

Prove: $\angle X \cong \angle Z$



		Statements		
WY≅ WY	WYIXZ	<u>∠YWX≅ ZYWZ</u>	\overline{WY} is an altitude of ΔXYZ	∠YWX and ∠YWZ
WY is an angle bisector ΔΧΥΖ	$\Delta XYW \cong \Delta ZYW$	_X≥ZZ	∠XYW≅ ZZYW	are right angles

Reasons						
Given	CPCTC	Reflexive POC				
If two segments are perpendicular, then they form right angles	If two angles are right angles, then they are congruent	If a segment is an angle bisector, then it divides an angle into 2 congruent angles				
Given	If corresponding ASA of two triangles are congruent, then the triangles are congruent	If a segment is an altitude of a triangle, then it is perpendicular to a side of the triangle				

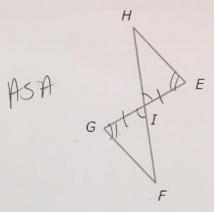
	Statements	Donas	
	1. WY 15 although AXYZ	1. Gilen	
	WY I XZ	2. If segment is an altitude to	
	3. LYWX & LYWZ are 11/2ht Ls	3. If 2 segrents gre L, tren trey form right L	
A	- LYUX = LYW7	4. If 2 is are eight is, then they are =	
	5. Wy 15 on angle bisecture	5. Even	
H	ZXYW = LZYW	6. If Segrent 15 an anche tice 1	
5	Wy = Wy	7. Reflexive PCC	
	0 0 00/4/	and standing 145 th of I de to	
		9. CPCTC	

Fill in the blanks to complete the proof. Mark the diagram first!

Given: *I* is the midpoint of \overline{EG}

 $\angle E \cong \angle G$

Prove: \overline{EG} bisects \overline{HF}



Statements	Reasons	
1. I is the midpoint of \overline{EG}	1. Given	
2. 豇兰 豇	2. If a point is a midpoint of a segment, then <u>A diudes</u> Segment into 2 = Segments	
3. $\angle E \cong \angle G$	3. Given	
4. ∠GIF and ∠EIH are vertical angles	4. Gren by diagram	
5. 2GIF SZEIH	5. If two angles are vertical angles, then Hay are	
6. <u>A GIF</u> ≅ <u>A</u> <u>E114</u>	6. If corresponding ASA of two triangles are congruent, then the triangles are congruent	
7. <i>TH</i> ≅ <i>TF</i>	7. GPCTC	
8. \overline{EG} bisects \overline{HF}	8. If a segment divides a segment into two congruent segments, then	

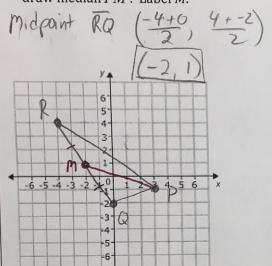
Station 2: Drawing Special Segments

Midpoint Formula

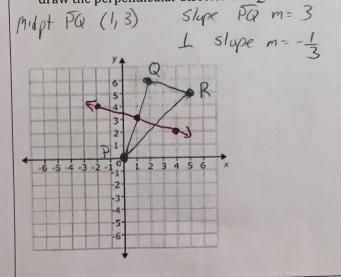
(x,+x2, y,+x2)

1. Fill in the blanks to review how to draw each special segment.

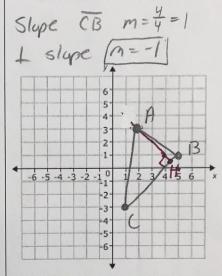
- To draw a median of a triangle, you need to find the <u>majoint</u> of the opposite side. The median has endpoints at a <u>vertex</u> of the triangle and the midpoint of the opposite side.
- To draw an altitude, you need to find the ______ of the opposite side. Begin at the vertex of a triangle and use the ______ ceciprocal _____ slope of the opposite side to draw the altitude.
- To draw a perpendicular bisector of a side of a triangle, you need to find the midpoint and the of the side. Begin at the midpoint and use the opposite reciprocal slope of the side to draw the perpendicular bisector.
- 2. The vertices of $\triangle PQR$ are at P(3, -1), Q(0, -2), and R(-4, 4). Graph $\triangle PQR$ and label its vertices. Then draw median \overline{PM} . Label M.



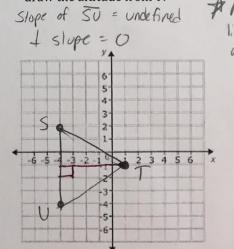
4. The vertices of $\triangle PQR$ are at P(0, 0), Q(2, 6), and R(5, 5). Graph $\triangle PQR$ and label its vertices. Then draw the perpendicular bisector of \overline{PQ} .



3. The vertices of $\triangle ABC$ are at A(2, 3), B(5, 1), and C(1, -3). Graph $\triangle ABC$ and label its vertices. Then draw altitude \overline{AH} . Label H.



5. The vertices of $\triangle STU$ are at S(-4, 2), T(1-1), and U(-4, -4). Graph $\triangle STU$ and label its vertices. Then draw the altitude from T.



A vertical
line 15
qluays 1
to a horizonth

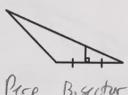
What is the length of the altitude from 7? 5 units

Station 3: Finding Missing Values with Special Segments

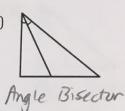
1. Identify each special segment as a median, angle bisector, perpendicular bisector, or altitude.

a)

b)



d)



 \overline{YB} is an altitude of ΔXYZ and $m \angle YBZ = (7x + 27)^{\circ}$. Find the value of x.

$$7x + 27 = 90$$

$$7x = 63$$

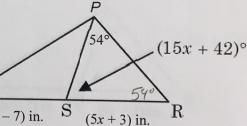
$$7x = 63$$

$$X = 9$$

3. \overline{AM} is a *median* of $\triangle ABC$. Draw the median in the diagram. If BM = 10x - 8 and CM = 3x + 34, find the value of x = 3x + 34, find the value of x = 3x + 34.

4. Given \overline{PS} is a median. Find $m \angle PSR$.

$$10x-7=5x+3$$
 $15(2)+42=72°$



 $m \angle PSR = \frac{72^{\circ}}{}$ Classify $\triangle PRS$ by angles and sides:

Isusceles

5. In a diagram shown, \overline{UV} is a perpendicular bisector of ΔSVW and \overline{WV} is an angle bisector of ΔSWT . Mark the diagram with the given information and then solve for x, y, and $m \angle SWT$.

$$2x = 2$$
 $y = 10$ $x = 1$ $y = 10$ $y = 10$

Station 4: The Triangle Inequality Theorem

Is it possible to form a triangle with the given side lengths? If not, explain why not.

1. 2 ft, 3 ft, 4 ft Yes

2. 2 m, 12 m, 10 m 2+10 \$ 12 No

3. 7.5 in, 9 in, 1 in 7.5+1×9 No

Find the range for the measure of the third side of a triangle given the measures of two sides.

4. 5ft, 9ft 5+x>9

5+x>9 5+4>x 9+x>5 5. 7 in, 14 in. 7+14>x 7+x>14 14x>7

(x>4) (4>x 14) (x>-4) (21>x) (x>-7)

Find the range of possible measures of x if each set of expressions represents measures of the sides of a triangle.

6. (x + 1) yds., 5 yds., 7 yds.

Is it possible to form a triangle with the given side lengths? If not, explain why not.

1. 2 ft, 3 ft, 4 ft

2. 2 m, 12 m, 10 m

3. 7.5 in, 9 in, 1 in

Find the range for the measure of the third side of a triangle given the measures of two sides.

4. 5 ft, 9 ft

5. 7 in, 14 in.

Find the range of possible measures of x if each set of expressions represents measures of the sides of a triangle.

6. (x + 1) yds., 5 yds., 7 yds.

7. 12 ft, 20 ft, (2k + 4) ft

Station 5: Angle-Side Theorem & Exterior Angle Theorem

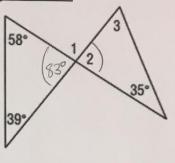
1. Find the indicated angle measures.

$$m \angle 1 = \frac{Q7^{\circ}}{m \angle 2 = 83^{\circ}}$$

$$m \angle 3 = 62^{\circ}$$

$$M = 1 + m = 1 = 180$$

 $m = 1 + 83 = 180$
 $m = 1 = 97$
 $m = 1 = 180$
 $m = 1 = 180$



2. Fill in the blank with sometimes, always, or never.

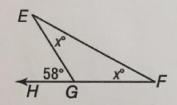
a. The acute angles of a right triangle are held supplementary.

b. The acute angles of a right triangle are _____ complementary.

c. There can Never be two right angles in a triangle.

d. A right triangle is <u>Sume time 5</u> an isosceles triangle.

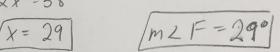
3. Find $m \angle F$.



$$x + x = 58$$

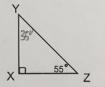
$$2x = 58$$

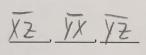
$$x = 29$$



4. List the angles in order from smallest to largest.

5. List the sides in order from smallest to largest.





6. Find the value of x and the following angle measures.

$$3x + 9x - 20 = 2x + 100$$

$$12x - 20 = 2x + 100$$

$$10x = 120$$

$$x = 12$$

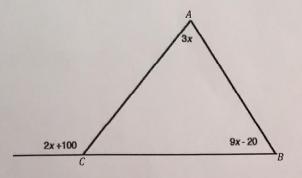
$$x = 12$$
 $m \angle A = 36^{\circ}$
 $m \angle B = 88^{\circ}$
 $m \angle ACB = 56^{\circ}$

exterior angle = 124°

Classify $\triangle ABC$:

 $ACCB = 56^{\circ}$
 $ACCB = 56^{\circ}$
 $ACCB = 56^{\circ}$

$$m\angle ACB = 56^{\circ}$$

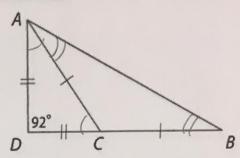


Station 6: Isosceles and Equilateral Triangles

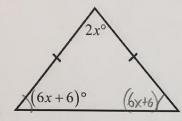
1. Find the indicated angle measures.

$$m\angle CAD = \underline{U}\underline{U}^{\circ}$$

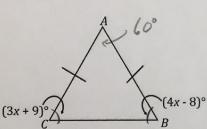
$$m\angle ABC = 22^{\circ}$$



2. Find the value of *x*. Then classify the triangle by its sides and angles.



3. Find the value of *x*. Then classify the triangle by its sides and angles.



$$3x+9=4x-8$$

$$x = 17 \quad m \angle A = 60$$

x = 17 $m \angle A = 60^{\circ}$ Classification: Equipment Equipment

4. $\triangle FGH$ is an equilateral triangle with FG = (x + 5) in., GH = (3x - 9) in. and FH = (2x - 2)in. Find the value of x and FG. (Draw a diagram to help!)

$$2x = 1$$

- FG = 12 in
- 5. Find the values of x and y in the diagram shown.

$$7y-3=3y+13$$
 $2x+3=25$
 $4y=16$ $2x=22$
 $y=9$ $x=11$

