Station 1: Proof Practice

Use the statements and reasons provided to complete the proof. Mark the diagram first!
Given: $\overline{W Y}$ is an altitude of $\triangle X Y Z$
$\overline{W Y}$ is an angle bisector $\triangle X Y Z$
Prove: $\angle X \cong \angle Z$

Statements				
$\overline{W Y} \cong \overline{W Y}$	$\overline{W Y} \perp \overline{X Z}$	$\angle Y W X \cong \angle Y W Z$	$\overline{W Y}$ is an altitude of $\Delta X Y Z$	$\angle Y W X$ and $\angle Y W Z$ are right angles
$\overline{W Y}$ is an angle bisector $\Delta X Y Z$	$\Delta X Y W \cong \Delta Z Y W$	$\angle X \cong \angle Z$	$\angle X Y W \cong \angle Z Y W$	

Reasons				CPCTC	Reflexive POC
Given	$\begin{array}{c}\text { If two segments are perpendicular, } \\ \text { then they form right angles }\end{array}$	$\begin{array}{c}\text { If two angles are right angles, then } \\ \text { they are congruent }\end{array}$			

then it divides an angle into 2

congruent angles\end{array}\right]\)

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.
9.	9.

Fill in the blanks to complete the proof. Mark the diagram first!
Given: I is the midpoint of $\overline{E G}$ $\angle E \cong \angle G$

Prove: $\overline{E G}$ bisects $\overline{H F}$

Statements	Reasons
1. I is the midpoint of $\overline{E G}$	1.
2.	2. If a point is a midpoint of a segment, then
3. $\angle E \cong \angle G$	3. Given
4. $\angle G I F$ and $\angle E I H$ are vertical angles	4.
5.	5. If two angles are vertical angles, then
6. Δ	6. If corresponding \qquad of two triangles are congruent, then the triangles are congruent
7. $\overline{I H} \cong \overline{I F}$	7.
8. $\overline{E G}$ bisects $\overline{H F}$	8. If a segment divides a segment into two congruent segments, then \qquad

Station 2: Drawing Special Segments

1. Fill in the blanks to review how to draw each special segment.

- To draw a median of a triangle, you need to find the \qquad of the opposite side. The median has endpoints at a \qquad of the triangle and the midpoint of the opposite side.
- To draw an altitude, you need to find the \qquad of the opposite side. Begin at the vertex of a triangle and use the \qquad slope of the opposite side to draw the altitude.
- To draw a perpendicular bisector of a side of a triangle, you need to find the midpoint and the \qquad of the side. Begin at the \qquad and use the opposite \qquad slope of the side to draw the perpendicular bisector.

2. The vertices of $\triangle P Q R$ are at $P(3,-1), Q(0,-2)$, and $R(-4,4)$. Graph $\triangle P Q R$ and label its vertices. Then draw median $\overline{P M}$. Label M.

3. The vertices of $\triangle P Q R$ are at $P(0,0), Q(2,6)$, and $R(5,5)$. Graph $\triangle P Q R$ and label its vertices. Then draw the perpendicular bisector of $\overline{P Q}$.

4. The vertices of $\triangle A B C$ are at $A(2,3), B(5,1)$, and $C(1,-3)$. Graph $\triangle A B C$ and label its vertices. Then draw altitude $\overline{A H}$. Label H.

5. The vertices of $\triangle S T U$ are at $S(-4,2), T(1-1)$, and $U(-4,-4)$. Graph $\triangle S T U$ and label its vertices. Then draw the altitude from T.

What is the length of the altitude from T ?

1. Identify each special segment as a median, angle bisector, perpendicular bisector, or altitude.
a)

b)

c)

d)

2. $\overline{Y B}$ is an altitude of $\triangle X Y Z$ and $m \angle Y B Z=(7 x+27)^{\circ}$. Find the value of x.

3. $\overline{A M}$ is a median of $\triangle A B C$. Draw the median in the diagram. If $B M=10 x-8$ and $C M=3 x+34$, find the value of x and $C B$.

$x=$ \qquad $C B=$ \qquad
4. Given $\overline{P S}$ is a median. Find $m \angle P S R$.

$m \angle P S R=$ \qquad Classify $\triangle P R S$ by angles and sides: \qquad
5. In a diagram shown, $\overline{U V}$ is a perpendicular bisector of $\triangle S V W$ and $\overline{W V}$ is an angle bisector of $\Delta S W T$. Mark the diagram with the given information and then solve for x, y, and $m \angle S W T$.
$m \angle S W T=$ \qquad

Station 4: The Triangle Inequality Theorem

Is it possible to form a triangle with the given side lengths? If not, explain why not.

1. $2 f t, 3 f t, 4 f t$
2. $2 m, 12 m, 10 m$
3. $7.5 \mathrm{in}, 9 \mathrm{in}, 1$ in

Find the range for the measure of the third side of a triangle given the measures of two sides.
4. $5 f t, 9 f t$
5. 7 in, 14 in.

Find the range of possible measures of x if each set of expressions represents measures of the sides of a triangle. 6. $(x+1)$ yds., 5 yds., 7 yds.
$7.12 \mathrm{ft}, 20 \mathrm{ft},(2 k+4) \mathrm{ft}$

Station 4: The Triangle Inequality Theorem

Is it possible to form a triangle with the given side lengths? If not, explain why not.

1. $2 f t, 3 f t, 4 f t$
2. $2 m, 12 m, 10 m$
3. $7.5 \mathrm{in}, 9 \mathrm{in}, 1 \mathrm{in}$

Find the range for the measure of the third side of a triangle given the measures of two sides.
4. $5 f t, 9 f t$
5. 7 in, 14 in.

Find the range of possible measures of x if each set of expressions represents measures of the sides of a triangle.
6. $(x+1)$ yds., 5 yds., 7 yds.
$7.12 \mathrm{ft}, 20 \mathrm{ft},(2 k+4) \mathrm{ft}$

1. Find the indicated angle measures.
$m \angle 1=$ \qquad $m \angle 2=$ \qquad $m \angle 3=$ \qquad

2. Fill in the blank with sometimes, always, or never.
a. The acute angles of a right triangle are \qquad supplementary.
b. The acute angles of a right triangle are \qquad complementary.
c. There can \qquad be two right angles in a triangle.
d. A right triangle is \qquad an isosceles triangle.
3. Find $m \angle F$.

4. List the angles in order from smallest to largest.

5. List the sides in order from smallest to largest.

6. Find the value of x and the following angle measures.
$x=$ \qquad
$m \angle A=$ \qquad $m \angle B=$ \qquad

$$
m \angle A C B=
$$ exterior angle $=$ \qquad

Classify $\triangle A B C$: \qquad

Station 6: Isosceles and Equilateral Triangles

1. Find the indicated angle measures.
$m \angle C A D=$ \qquad $m \angle A C D=$ \qquad
$m \angle A C B=$ \qquad $m \angle A B C=$ \qquad
2. Find the value of x. Then classify the triangle by its sides and angles.

$$
x=
$$

\qquad
3. Find the value of x. Then classify the triangle by its sides and angles.

$$
x=\ldots \quad m \angle A=
$$

Classification: \qquad
4. $\triangle F G H$ is an equilateral triangle with $F G=(x+5)$ in., $G H=(3 x-9)$ in. and $F H=(2 x-2) i n$. Find the value of x and $F G$. (Draw a diagram to help!)

$$
x=
$$

\qquad $F G=$ \qquad
5. Find the values of x and y in the diagram shown.

