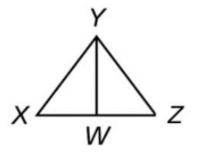
Station 1: Proof Practice

Use the statements and reasons provided to complete the proof. Mark the diagram first!

Given: \overline{WY} is an altitude of ΔXYZ

 \overline{WY} is an angle bisector ΔXYZ

Prove: $\angle X \cong \angle Z$



<u>Statements</u>					
$\overline{WY} \cong \overline{WY}$	$\overline{WY} \perp \overline{XZ}$	$\angle YWX \cong \angle YWZ$	\overline{WY} is an altitude of ΔXYZ	$\angle YWX$ and $\angle YWZ$	
\overline{WY} is an angle bisector ΔXYZ	$\Delta XYW \cong \Delta ZYW$	$\angle X \cong \angle Z$	$\angle XYW \cong \angle ZYW$	are right angles	

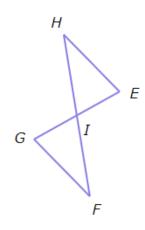
Reasons					
Given	CPCTC	Reflexive POC			
If two segments are perpendicular, then they form right angles	If two angles are right angles, then they are congruent	If a segment is an angle bisector, then it divides an angle into 2 congruent angles			
Given	If corresponding ASA of two triangles are congruent, then the triangles are congruent	If a segment is an altitude of a triangle, then it is perpendicular to a side of the triangle			

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.
9.	9.

Fill in the blanks to complete the proof. **Mark the diagram first!**

Given: *I* is the midpoint of \overline{EG} $\angle E \cong \angle G$

Prove: \overline{EG} bisects \overline{HF}

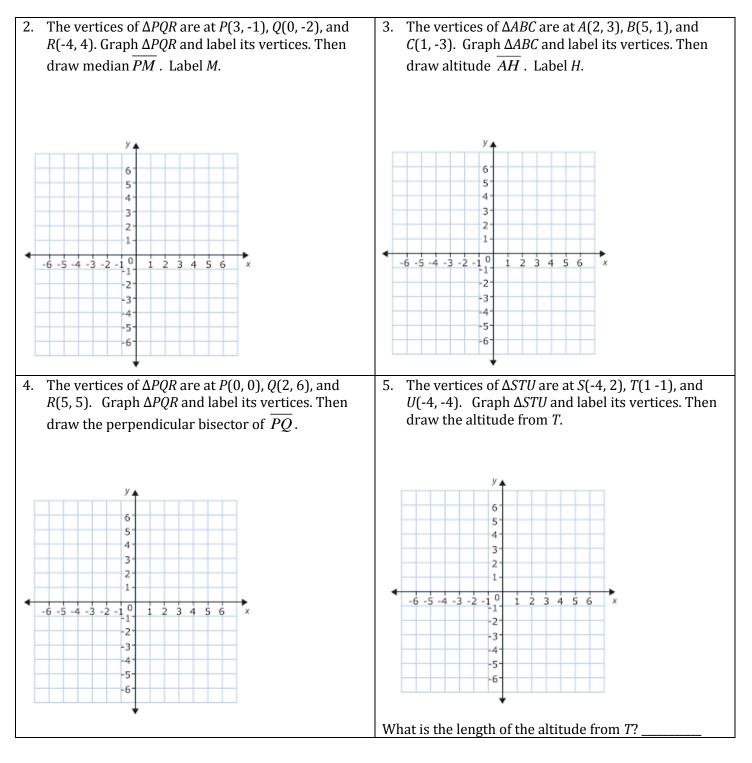


Statements	Reasons	
1. <i>I</i> is the midpoint of \overline{EG}	1.	
2.	2. If a point is a midpoint of a segment, then	
3. $\angle E \cong \angle G$	3. Given	
4. $\angle GIF$ and $\angle EIH$ are vertical angles	4.	
5.	5. If two angles are vertical angles, then	
6. Δ≅ Δ	6. If corresponding of two triangles are congruent, then the triangles are congruent	
7. $\overline{IH} \cong \overline{IF}$	7.	
8. \overline{EG} bisects \overline{HF}	8. If a segment divides a segment into two congruent segments, then	

Station 2: Drawing Special Segments

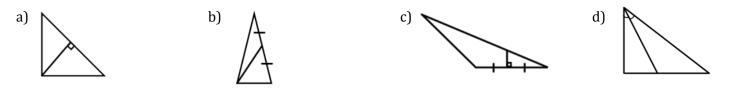
1. Fill in the blanks to review how to draw each special segment.

- To draw a median of a triangle, you need to find the ______ of the opposite side. The median has endpoints at a ______ of the triangle and the midpoint of the opposite side.
- To draw an altitude, you need to find the ______ of the opposite side. Begin at the vertex of a triangle and use the ______ slope of the opposite side to draw the altitude.
- To draw a perpendicular bisector of a side of a triangle, you need to find the midpoint and the ______ of the side. Begin at the ______ and use the opposite ______ slope of the side to draw the perpendicular bisector.



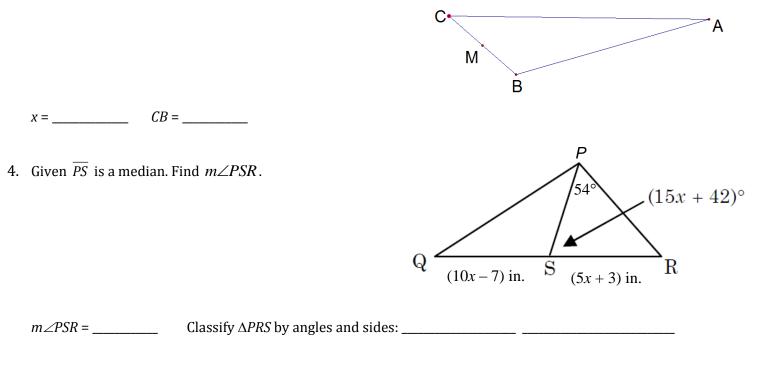
Station 3: Finding Missing Values with Special Segments

1. Identify each special segment as a median, angle bisector, perpendicular bisector, or altitude.

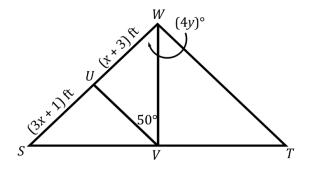


2. \overline{YB} is an altitude of ΔXYZ and $m \angle YBZ = (7x + 27)^\circ$. Find the value of *x*.

3. \overline{AM} is a *median* of $\triangle ABC$. Draw the median in the diagram. If BM = 10x - 8 and CM = 3x + 34, find the value of x and CB.



5. In a diagram shown, \overline{UV} is a perpendicular bisector of ΔSVW and \overline{WV} is an angle bisector of ΔSWT . Mark the diagram with the given information and then solve for *x*, *y*, and $m \angle SWT$.



Y

R

Ζ

Station 4: The Triangle Inequality Theorem

Is it possible to form a triangle with the given side lengths? If not, explain why not.

 1. 2 ft, 3 ft, 4 ft
 2. 2 m, 12 m, 10 m
 3. 7.5 in, 9 in, 1 in

Find the range for the measure of the third side of a triangle given the measures of two sides.

4. 5 ft, 9 ft 5. 7 in, 14 in.

Find the range of possible measures of *x* if each set of expressions represents measures of the sides of a triangle.

6. (x + 1) yds., 5 yds., 7 yds. 7. 12 ft, 20 ft, (2k + 4) ft

Station 4: The Triangle Inequality Theorem

Is it possible to form a triangle with the given side lengths? If not, explain why not.

 1. 2 ft, 3 ft, 4 ft
 2. 2 m, 12 m, 10 m
 3. 7.5 in, 9 in, 1 in

Find the range for the measure of the third side of a triangle given the measures of two sides.

4. 5 ft, 9 ft 5. 7 in, 14 in.

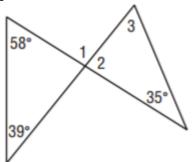
Find the range of possible measures of *x* if each set of expressions represents measures of the sides of a triangle.

6. (*x* + 1) yds., 5 yds., 7 yds.

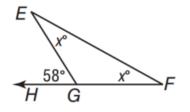
7. 12 ft, 20 ft, (2*k* + 4) ft

Station 5: Angle-Side Theorem & Exterior Angle Theorem

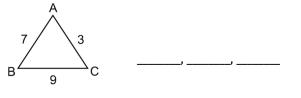
- 1. Find the indicated angle measures.
 - *m*∠1=_____ *m*∠2=_____ *m*∠3=_____



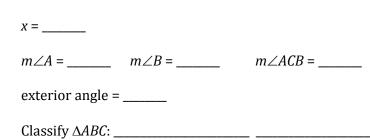
- 2. Fill in the blank with *sometimes, always, or never*.
 - a. The acute angles of a right triangle are ______ supplementary.
 - b. The acute angles of a right triangle are _____ complementary.
 - c. There can ______ be two right angles in a triangle.
 - d. A right triangle is ______ an isosceles triangle.
- 3. Find $m \angle F$.



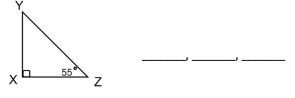
4. List the <u>angles</u> in order from *smallest to largest*.

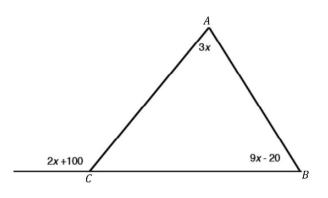


6. Find the value of *x* and the following angle measures.

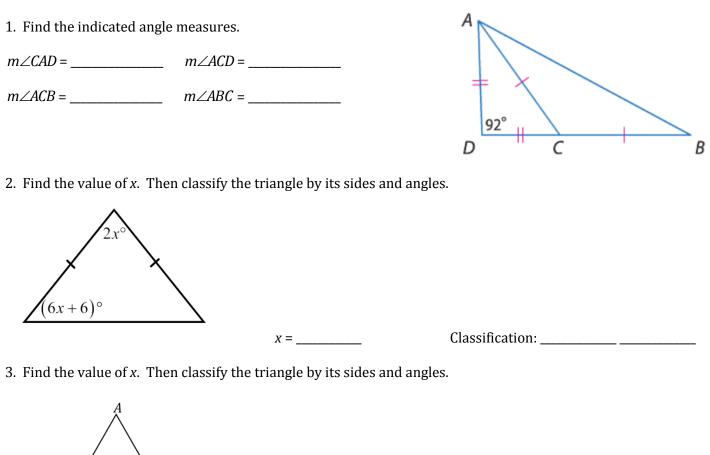


5. List the <u>sides</u> in order from *smallest to largest*.



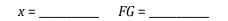


Station 6: Isosceles and Equilateral Triangles

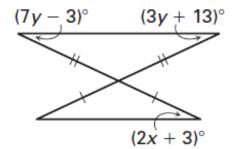


 $(3x+9)^{\circ}_{C} \xrightarrow{(4x-8)^{\circ}}_{B} x = \underline{\qquad} m \angle A = \underline{\qquad} Classification: \underline{\qquad}$

4. ΔFGH is an equilateral triangle with FG = (x + 5) in., GH = (3x - 9) in. and FH = (2x - 2)in. Find the value of x and FG. (Draw a diagram to help!)



5. Find the values of *x* and *y* in the diagram shown.



x = _____ *y* = _____